
.NET Core 2.1

Getting Started Guide

Last Updated: 2018-10-12

.NET Core 2.1 Getting Started Guide

Legal Notice

Copyright © 2018 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

.NET Core is a general purpose development platform featuring automatic memory management
and modern programming languages. It allows users to build high-quality applications efficiently.
.NET Core is available in Red Hat Enterprise Linux and OpenShift Container Platform via certified
containers. .NET Core offers the following features: The ability to follow a microservices-based
approach, where some components are built with .NET and others with Java, but all can run on a
common, supported platform in Red Hat Enterprise Linux and OpenShift Container Platform. The
capacity to more easily develop new .NET Core workloads on Microsoft Windows. Customers can
deploy and run on either Red Hat Enterprise Linux or Windows Server. A heterogeneous data
center, where the underlying infrastructure is capable of running .NET applications without having to
rely solely on Windows Server. .NET Core 2.1 is supported on Red Hat Enterprise Linux 7 and
OpenShift Container Platform versions 3.3 and later.

. .

. .

. .

. .

Table of Contents

CHAPTER 1. USING .NET CORE 2.1 ON RED HAT ENTERPRISE LINUX
1.1. INSTALL AND REGISTER RED HAT ENTERPRISE LINUX
1.2. INSTALL .NET CORE
1.3. CREATE AN APPLICATION
1.4. PUBLISH APPLICATIONS

1.4.1. Publish .NET Core Applications
1.4.2. Publish ASP.NET Core Applications

1.5. RUN APPLICATIONS ON DOCKER

CHAPTER 2. USING .NET CORE 2.1 ON RED HAT OPENSHIFT CONTAINER PLATFORM
2.1. INSTALL IMAGE STREAMS
2.2. DEPLOY APPLICATIONS FROM SOURCE
2.3. DEPLOY APPLICATIONS FROM BINARY ARTIFACTS
2.4. ENVIRONMENT VARIABLES
2.5. SAMPLE APPLICATIONS

CHAPTER 3. MIGRATING TO .NET CORE 2.1
3.1. MIGRATING FROM PREVIOUS VERSIONS OF .NET CORE
3.2. MIGRATING FROM .NET FRAMEWORK TO .NET CORE 2.1

3.2.1. Migration considerations
3.2.2. .NET Framework migration articles

APPENDIX A. REVISION HISTORY

3
3
4
5
5
5
6
7

8
8
9

10
10
12

14
14
14
14
15

16

Table of Contents

1

.NET Core 2.1 Getting Started Guide

2

CHAPTER 1. USING .NET CORE 2.1 ON RED HAT ENTERPRISE
LINUX

This Getting Started Guide describes how to install .NET Core 2.1 on Red Hat Enterprise Linux (RHEL).
See Red Hat Enterprise Linux documentation for more information about RHEL 7.

1.1. INSTALL AND REGISTER RED HAT ENTERPRISE LINUX

1. Install RHEL 7 using one of the following images:

Red Hat Enterprise Linux 7 Server

Red Hat Enterprise Linux 7 Workstation

Red Hat Enterprise Linux for Scientific Computing
See the Red Hat Enterprise Linux Installation Guide for details on how to install RHEL.

See Red Hat Enterprise Linux Product Documentation page for available RHEL versions.

2. Use the following command to register the system.

$ sudo subscription-manager register

You can also register the system by following the appropriate steps in Registering and
Unregistering a System in the Red Hat Subscription Management document.

3. Display a list of all subscriptions that are available for your system and identify the pool ID for the
subscription.

$ sudo subscription-manager list --available

This command displays the subscription name, unique identifier, expiration date, and other
details related to it. The pool ID is listed on a line beginning with Pool ID.

4. Attach the subscription that provides access to the dotNET on RHEL repository. Use the pool
ID you identified in the previous step.

$ sudo subscription-manager attach --pool=<appropriate pool ID from
the subscription>

5. Enable the .NET Core channel for Red Hat Enterprise 7 Server, Red Hat Enterprise 7
Workstation, or HPC Compute Node with one of the following commands, respectively.

$ sudo subscription-manager repos --enable=rhel-7-server-dotnet-rpms
$ sudo subscription-manager repos --enable=rhel-7-workstation-
dotnet-rpms
$ sudo subscription-manager repos --enable=rhel-7-hpc-node-dotnet-
rpms

6. Verify the list of subscriptions attached to your system.

$ sudo subscription-manager list --consumed

CHAPTER 1. USING .NET CORE 2.1 ON RED HAT ENTERPRISE LINUX

3

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/
https://access.redhat.com/downloads/content/69/ver=/rhel---7/7.5/x86_64/product-software
https://access.redhat.com/downloads/content/71/ver=/rhel---7/7.5/x86_64/product-software
https://access.redhat.com/downloads/content/76/ver=/rhel---7/7.5/x86_64/product-software
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/installation_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/
https://access.redhat.com/documentation/en-us/red_hat_subscription_management/1/html/quick_registration_for_rhel/registering-machine-ui

7. Install the scl tool.

$ sudo yum install scl-utils

1.2. INSTALL .NET CORE

1. Install .NET Core 2.1 and all of its dependencies.

$ sudo yum install rh-dotnet21 -y

2. Enable the rh-dotnet21 Software Collection environment so you can run dotnet commands
in the bash shell
This procedure installs the .NET Core 2.1 runtime with the latest 2.1 SDK. When a newer SDK
becomes available, it automatically installs as a package update.

$ scl enable rh-dotnet21 bash

This command does not persist; it creates a new shell, and the dotnet command is only
available within that shell. If you log out, use another shell, or open up a new terminal, the
dotnet command is no longer enabled.

WARNING

Red Hat does not recommend permanently enabling rh-dotnet21
because it may affect other programs. For example, rh-dotnet21
includes a version of libcurl that differs from the base RHEL version. This
may lead to issues in programs that do not expect a different version of
libcurl. If you want to enable rh-dotnet permanently, add the following
line to your ~/.bashrc file.

source scl_source enable rh-dotnet21

3. Run the following command to verify the installation succeeded.

$ dotnet --info
.NET Core SDK (reflecting any global.json):
 Version: 2.1.300
 Commit: ded465c666

Runtime Environment:
 OS Name: rhel
 OS Version: 7
 OS Platform: Linux
 RID: rhel.7-x64
 Base Path: /opt/rh/rh-dotnet21/root/usr/lib64/dotnet/sdk/2.1.300/

Host (useful for support):
 Version: 2.1.0

.NET Core 2.1 Getting Started Guide

4

 Commit: N/A

 .NET Core SDKs installed:
 2.1.300 [/opt/rh/rh-dotnet21/root/usr/lib64/dotnet/sdk]

.... omitted

1.3. CREATE AN APPLICATION

1. Create a new Console application in a directory called hello-world.

$ dotnet new console -o hello-world
 The template "Console Application" was created successfully.

 Processing post-creation actions...
 Running 'dotnet restore' on hello-world/hello-world.csproj...
 Restoring packages for /home/<USER>/hello-world/hello-
world.csproj...
 Generating MSBuild file /home/<USER>/hello-world/obj/hello-
world.csproj.nuget.g.props.
 Generating MSBuild file /home/<USER>/hello-world/obj/hello-
world.csproj.nuget.g.targets.
 Restore completed in 224.85 ms for /home/<USER>/hello-world/hello-
world.csproj.

 Restore succeeded.

2. Run the project.

$ cd hello-world
$ dotnet run
Hello World!

1.4. PUBLISH APPLICATIONS

The .NET Core 2.1 applications can be published to use a shared system-wide version of .NET Core or
to include .NET Core. These two deployment types are called framework-dependent deployment (FDD)
and self-contained deployment (SCD), respectively.

For RHEL, we recommend publishing by FDD. This method ensures the application is using an up-to-
date version of .NET Core, built by Red Hat, that includes a specific set of native dependencies. These
native libraries are part of the rh-dotnet21 Software Collection. On the other hand, SCD uses a
runtime built by Microsoft. Running applications outside the rh-dotnet21 Software Collection may
cause issues due to the unavailability of native libraries.

1.4.1. Publish .NET Core Applications

1. Use the following command to publish a framework-dependent application.

$ dotnet publish -f netcoreapp2.1 -c Release

2. Optional: If the application is only for RHEL, trim out the dependencies needed for other
platforms with these commands.

CHAPTER 1. USING .NET CORE 2.1 ON RED HAT ENTERPRISE LINUX

5

$ dotnet restore -r rhel.7-x64
$ dotnet publish -f netcoreapp2.1 -c Release -r rhel.7-x64 --self-
contained false

3. Enable the Software Collection and pass the application assembly name to the dotnet
command to run the application on a RHEL system.

$ scl enable rh-dotnet21 -- dotnet <app>.dll

4. This command can be added to a script that is published with the application. Add the following
script to your project and update the ASSEMBLY variable.

#!/bin/bash

ASSEMBLY=<app>.dll
SCL=rh-dotnet21
DIR="$(dirname "$(readlink -f "$0")")"

scl enable $SCL -- dotnet "$DIR/$ASSEMBLY" "$@"

5. To include the script when publishing, add this ItemGroup to the csproj file.

<ItemGroup>
 <None Update="<scriptname>" Condition="'$(RuntimeIdentifier)' ==
'rhel.7-x64' and '$(SelfContained)' == 'false'"
CopyToPublishDirectory="PreserveNewest" />
 </ItemGroup>

1.4.2. Publish ASP.NET Core Applications

When using the Microsoft SDK, ASP.NET Core 2.1 web applications are published with a dependency
on the ASP.NET Core shared framework. This is a set of packages that are expected to be available on
the runtime system.

When publishing on RHEL, these packages are included with the application. To include the packages
using the Microsoft SDK, the MicrosoftNETPlatformLibrary property must be set to
Microsoft.NETCore.App in the project file as shown below.

<Project Sdk="Microsoft.NET.Sdk.Web">
 <PropertyGroup>
 <TargetFramework>netcoreapp2.1</TargetFramework>

<MicrosoftNETPlatformLibrary>Microsoft.NETCore.App</MicrosoftNETPlatformLi
brary>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.App" Version="2.1" />
 </ItemGroup>
</Project>

As an alternative, this property can be set when publishing the application.

.NET Core 2.1 Getting Started Guide

6

$ dotnet publish -f netcoreapp2.1 -c Release -r rhel.7-x64 --self-
contained false /p:MicrosoftNETPlatformLibrary=Microsoft.NETCore.App

1.5. RUN APPLICATIONS ON DOCKER

This section shows how to use the dotnet/dotnet-21-runtime-rhel7 image to run a precompiled
application inside a Docker container.

1. Create a new mvc project in a directory named mvc_runtime_example.

$ dotnet new mvc -o mvc_runtime_example --no-restore
$ cd mvc_runtime_example

2. Restore and publish the project.

$ dotnet restore -r rhel.7-x64
$ dotnet publish -f netcoreapp2.1 -c Release -r rhel.7-x64 --self-
contained false /p:MicrosoftNETPlatformLibrary=Microsoft.NETCore.App

3. Create the Dockerfile.

$ cat > Dockerfile <<EOF
FROM registry.access.redhat.com/dotnet/dotnet-21-runtime-rhel7

ADD bin/Release/netcoreapp2.1/rhel.7-x64/publish/ .

CMD ["dotnet", "mvc_runtime_example.dll"]
EOF

4. Build your image.

$ docker build -t dotnet-21-runtime-example .

5. Run your image.

$ docker run -d -p8080:8080 dotnet-21-runtime-example

6. View the result in a browser: http://127.0.0.1:8080.

Report a bug

CHAPTER 1. USING .NET CORE 2.1 ON RED HAT ENTERPRISE LINUX

7

http://127.0.0.1:8080
https://bugzilla.redhat.com/enter_bug.cgi?product=dotNET&component=Documentation-Getting_Started_Guide

CHAPTER 2. USING .NET CORE 2.1 ON RED HAT OPENSHIFT
CONTAINER PLATFORM

2.1. INSTALL IMAGE STREAMS

The .NET Core image streams definition can be defined globally in the openshift namespace or
locally in your specific project.

1. If you are a system administrator or otherwise have sufficient permissions, change to the
openshift project. Using the openshift project allows you to globally update the image
stream definitions.

$ oc project openshift

If you do not have permissions to use the openshift project, you can still update your project
definitions starting with Step 2.

2. Run the following commands to list all available .NET Core image versions.

$ oc describe is dotnet -n openshift
$ oc describe is dotnet

The output shows installed images or the message Error from server (NotFound) if no
images are installed.

3. To pull the images, OpenShift needs credentials for authenticating with the
registry.redhat.io server. These credentials are stored in a secret.

NOTE

For OpenShift 3.11 and later, a secret is preconfigured for the openshift
namespace.

Enter the following command to list secrets. The first column shows the secret name.

$ oc get secret | grep kubernetes.io/dockerc

To check the contents of a secret, you can decode the .dockercfg or .dockerconfigjson
data from Base64 format. This allows you to see if you already have credentials for the
registry.redhat.io server. Enter the following command to show the .dockercfg section
in a secret.

$ oc get secret <secret-name> -o yaml | grep .dockercfg
 .dockercfg:
eyJyZWdpc3RyeS5yZWRoYXQuaW8iOnsidXNlcm5hbWUiOiIqKioqKioqKiIsInBhc3N3
b3JkIjoiKioqKioqKioiLCJlbWFpbCI6InVudXNlZCIsImF1dGgiOiJLaW9xS2lvcUtp
bzZLaW9xS2lvcUtpbz0ifX0=

Copy and paste the output in the following command to convert it from Base64 format. The
example below shows the credentials for the registry.redhat.io server.

$ echo

.NET Core 2.1 Getting Started Guide

8

eyJyZWdpc3RyeS5yZWRoYXQuaW8iOnsidXNlcm5hbWUiOiIqKioqKioqKiIsInBhc3N3
b3JkIjoiKioqKioqKioiLCJlbWFpbCI6InVudXNlZCIsImF1dGgiOiJLaW9xS2lvcUtp
bzZLaW9xS2lvcUtpbz0ifX0= | base64 -d
{"registry.redhat.io":
{"username":"********","password":"********","email":"unused","auth"
:"KioqKioqKio6KioqKioqKio="}}

You need to add a secret if there is no secret listed with credentials for the
registry.redhat.io server.

4. Red Hat account credentials are used for registry.redhat.io access. If you are a customer
with entitlements to Red Hat products, you already have account credentials to use. These are
typically the same credentials used to log in to the Red Hat Customer Portal. To verify your Red
Hat credentials, enter the following command and attempt to log in.

$ docker login registry.redhat.io

If you cannot log in, you first need to get an account with Red Hat. See Red Hat Container
Registry Authentication for additional information. If you can log in, enter the following
commands to create the secret.

$ oc create secret docker-registry redhat-registry \
 --docker-server=registry.redhat.io \
 --docker-username=<user-name> \
 --docker-password=<password> \
 --docker-email=unused
$ oc secrets link default redhat-registry --for=pull
$ oc secrets link builder redhat-registry

5. After creating the secret, enter the following command to import new image streams.

$ oc create -f https://raw.githubusercontent.com/redhat-
developer/s2i-dotnetcore/master/dotnet_imagestreams.json

If image streams were already installed, use the replace command to update the image stream
definitions.

$ oc replace -f https://raw.githubusercontent.com/redhat-
developer/s2i-dotnetcore/master/dotnet_imagestreams.json

2.2. DEPLOY APPLICATIONS FROM SOURCE

1. Run the following commands to deploy the ASP.NET Core application, which is in the app folder
on the dotnetcore-2.1 branch of the redhat-developer/s2i-dotnetcore-ex GitHub
repository.

$ oc new-app --name=exampleapp
'dotnet:2.1~https://github.com/redhat-developer/s2i-dotnetcore-
ex#dotnetcore-2.1' --build-env DOTNET_STARTUP_PROJECT=app

2. Use the oc logs command to track progress of the build.

$ oc logs -f bc/exampleapp

CHAPTER 2. USING .NET CORE 2.1 ON RED HAT OPENSHIFT CONTAINER PLATFORM

9

https://access.redhat.com/RegistryAuthentication

3. View the deployed application once the build is finished.

$ oc logs -f dc/exampleapp

4. At this point, the application is accessible within the project. To make it accessible externally,
use the oc expose command. You can then use oc get routes to find the URL.

$ oc expose svc/exampleapp
$ oc get routes

2.3. DEPLOY APPLICATIONS FROM BINARY ARTIFACTS

The .NET Core S2I builder image can be used to build an application using binary artifacts that you
provide.

1. Publish your application as described in Publish Applications. For example, the following
commands create a new web application and publish it.

$ dotnet new web -o webapp
$ cd webapp
$ dotnet publish -c Release
/p:MicrosoftNETPlatformLibrary=Microsoft.NETCore.App

2. Create a new binary build using the oc new-build command.

$ oc new-build --name=mywebapp dotnet:2.1 --binary=true

3. Start a build using the oc start-build command, specifying the path to the binary artifacts on
your local machine.

$ oc start-build mywebapp --from-
dir=bin/Release/netcoreapp2.1/publish

4. Create a new application using the oc new-app command.

$ oc new-app mywebapp

2.4. ENVIRONMENT VARIABLES

The .NET Core images support a number of environment variables to control the build behavior of your
.NET Core application. These variables can be set as part of the build configuration, or they can be
added to an .s2i/environment file in the application source code repository.

Variable Name Description Default

DOTNET_STARTUP_PROJECT Selects project to run. This must be
a project file (for example, csproj
or fsproj) or a folder containing a
single project file.

.

.NET Core 2.1 Getting Started Guide

10

https://access.redhat.com/documentation/en-us/net_core/2.1/html/getting_started_guide/gs_install_dotnet#publish_applications

DOTNET_SDK_VERSION Selects the default sdk version
when building. If there is a
global.json file in the source
repository, that takes precedence.
When set to latest the latest sdk in
the image is used.

Lowest sdk version
available in the image.

DOTNET_ASSEMBLY_NAME Selects the assembly to run. This
must not include the .dll extension.
Set this to the output assembly
name specified in csproj
(PropertyGroup/AssemblyName).

The name of the csproj
file

DOTNET_RESTORE_SOURCES Specifies the space-separated list of
NuGet package sources used
during the restore operation. This
overrides all of the sources
specified in the NuGet.config
file.

DOTNET_TOOLS Specifies a list of .NET tools to
install before building the app. It is
possible to install a specific version
by post pending the package name
with @<version>.

DOTNET_NPM_TOOLS Specifies a list of NPM packages to
install before building the
application.

DOTNET_TEST_PROJECTS Specifies the list of test projects to
test. This must be project files or
folders containing a single project
file. dotnet test is invoked for
each item.

DOTNET_CONFIGURATION Runs the application in Debug or
Release mode. This value should
be either Release or Debug.

Release

Variable Name Description Default

CHAPTER 2. USING .NET CORE 2.1 ON RED HAT OPENSHIFT CONTAINER PLATFORM

11

DOTNET_VERBOSITY Specifies the verbosity of the dotnet
build commands. When set, the
environment variables are printed at
the start of the build. This variable
can be set to one of the msbuild
verbosity values (q[uiet],
m[inimal], n[ormal],
d[etailed], and
diag[nostic]).

HTTP_PROXY, HTTPS_PROXY Configures the HTTP/HTTPS proxy
used when building and running the
application.

DOTNET_RM_SRC When set to true, the source code
will not be included in the image.

DOTNET_SSL_DIRS Used to specify a list of folders/files
with additional SSL certificates to
trust. The certificates are trusted by
each process that runs during the
build and all processes that run in
the image after the build (including
the application that was built). The
items can be absolute paths
(starting with /) or paths in the
source repository (for example,
certificates).

NPM_MIRROR Uses a custom NPM registry mirror
to download packages during the
build process.

ASPNETCORE_URLS This variable is set to
http://*:8080 to configure
ASP.NET Core to use the port
exposed by the image. Changing
this is not recommended.

http://*:8080

Variable Name Description Default

2.5. SAMPLE APPLICATIONS

Three sample applications are available:

dotnet-example: This is the default model–view–controller (MVC) application.

dotnet-runtime-example: This shows how to build an MVC application using a chained build. The
application is built in dotnet/dotnet-21-rhel7. The result is deployed in dotnet/dotnet-
21-runtime-rhel7. Note that chained builds are not supported on OpenShift Online.

.NET Core 2.1 Getting Started Guide

12

http://:8080
http://:8080
https://github.com/redhat-developer/s2i-dotnetcore/blob/master/templates/dotnet-example.json
https://github.com/redhat-developer/s2i-dotnetcore/blob/master/templates/dotnet-runtime-example.json

dotnet-pgsql-persistent: This is the Microsoft ASP.NET Core MusicStore sample application
using a PostgreSQL backend.

To add the samples using the OpenShift Web Console, browse to your project and click Add to project.
You can filter for dotnet. If the samples do not show up, you can add them to your installation by running
the following commands.

$ oc create -f https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/master/templates/dotnet-example.json
$ oc create -f https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/master/templates/dotnet-runtime-example.json
$ oc create -f https://raw.githubusercontent.com/redhat-developer/s2i-
dotnetcore/master/templates/dotnet-pgsql-persistent.json

Report a bug

CHAPTER 2. USING .NET CORE 2.1 ON RED HAT OPENSHIFT CONTAINER PLATFORM

13

https://github.com/redhat-developer/s2i-dotnetcore/blob/master/templates/dotnet-pgsql-persistent.json
https://bugzilla.redhat.com/enter_bug.cgi?product=dotNET&component=Documentation-Getting_Started_Guide

CHAPTER 3. MIGRATING TO .NET CORE 2.1
This chapter provides migration information for .NET Core 2.1.

3.1. MIGRATING FROM PREVIOUS VERSIONS OF .NET CORE

Microsoft provides instructions for migrating from most previous versions of .NET Core. When migrating,
the following ASP.NET Core 2.0 property should no longer be specified. It should remain the default
value for .NET Core 2.1. Make sure to remove this property from the project file and command line, if it is
being specified there.

<PublishWithAspNetCoreTargetManifest>false</PublishWithAspNetCoreTargetManife
st>

See the following Microsoft articles to migrate from previous versions of .NET Core.

Migrate from .NET Core 2.0 to 2.1

Migrate from ASP.NET Core 2.0 to 2.1

Migrate from ASP.NET Core 1.x to 2.0

Migrate to ASP.NET Core

Migrate from project.json to .csproj format

NOTE

If migrating from .NET Core 1.x to 2.0, see the first few related sections in Migrate from
ASP.NET Core 1.x to 2.0. These sections provide guidance that is appropriate for a .NET
Core 1.x to 2.0 migration path.

3.2. MIGRATING FROM .NET FRAMEWORK TO .NET CORE 2.1

Review the following information to migrate from the .NET Framework.

3.2.1. Migration considerations

Several technologies and APIs present in the .NET Framework are not available in .NET Core. If your
application or library requires these APIs, consider finding alternatives or continue using the .NET
Framework. .NET Core does not support the following technologies and APIs.

Desktop applications, for example, Windows Forms and Windows Presentation Foundation
(WPF)

Windows Communication Foundation (WCF) servers (WCF clients are supported)

.NET remoting

Additionally, a number of .NET APIs can only be used in Microsoft Windows environments. The following
list shows a few examples of these Windows-specific APIs.

Microsoft.Win32.Registry

System.AppDomains

.NET Core 2.1 Getting Started Guide

14

https://docs.microsoft.com/en-us/dotnet/core/migration/20-21
https://docs.microsoft.com/en-us/aspnet/core/migration/20_21?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/migration/1x-to-2x/?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/aspnet/core/migration/?view=aspnetcore-2.1
https://docs.microsoft.com/en-us/dotnet/core/migration/
https://docs.microsoft.com/en-us/aspnet/core/migration/1x-to-2x/?view=aspnetcore-2.1

System.Drawing

System.Security.Principal.Windows

Consider using the .NET Portability Analyzer to identify API gaps and potential replacements. For
example, enter the following command to find out how much of the API used by your .NET Framework
4.6 application is supported by .NET Core 2.1.

$ dotnet /path/to/ApiPort.dll analyze -f . -r html --target '.NET
Framework,Version=4.6' --target '.NET Core,Version=2.1'

IMPORTANT

Several APIs that are not supported in the out-of-the-box version of .NET Core may be
available from the Microsoft.Windows.Compatibility nuget package. Be careful when using
this nuget package. Some of the APIs provided (such as Microsoft.Win32.Registry) only
work on Windows, making your application incompatible with Red Hat Enterprise Linux.

3.2.2. .NET Framework migration articles

Refer to the following Microsoft articles when migrating from .NET Framework.

For general guidelines, see Porting to .NET Core from .NET Framework.

For porting libraries, see Porting to .NET Core - Libraries.

For migrating to ASP.NET Core, see Migrating to ASP.NET Core.

Report a bug

CHAPTER 3. MIGRATING TO .NET CORE 2.1

15

https://docs.microsoft.com/en-us/dotnet/standard/analyzers/portability-analyzer
https://blogs.msdn.microsoft.com/dotnet/2017/11/16/announcing-the-windows-compatibility-pack-for-net-core/#using-the-windows-compatibility-pack
https://docs.microsoft.com/en-us/dotnet/core/porting/
https://docs.microsoft.com/en-us/dotnet/core/porting/libraries
https://docs.microsoft.com/en-us/aspnet/core/migration/?view=aspnetcore-2.1
https://bugzilla.redhat.com/enter_bug.cgi?product=dotNET&component=Documentation-Getting_Started_Guide

APPENDIX A. REVISION HISTORY

Date Version Author Changes

08/21/2017 2.0 Les Williams Generally available

08/30/2017 2.0 Les Williams Revised
DOTNET_STARTUP_P
ROJECT and
DOTNET_TEST_PROJ
ECTS entries in Section
2.3

09/13/2017 2.0 Les Williams Revised Section 1.2 to
include a note about
how to permanently
enable rh-dotnet20

02/14/2018 2.0 Les Williams Revised Section 2.2 to
resolve BZ 1500230;
added quoting for zsh
and other shells

02/28/2018 2.0.3 Les Williams Revised to include SDK
2.0 and 2.1

06/14/2018 2.1 Les Williams Generally available

08/01/2018 2.1 Toby Drake Added Chapter 3 to
provide migration
instructions

08/24/2018 2.1 Toby Drake Added steps to enable a
user to get new image
streams

09/18/2018 2.1 Toby Drake Revised Section 2.1 to
include -n
openshift in a
command for listing
.NET Core image
versions. Modified the
grep command to
enable better search
results.

.NET Core 2.1 Getting Started Guide

16

10/12/2018 2.1 Toby Drake Added
DOTNET_SSL_DIRS
and DOTNET_RM_SRC
to Environment
Variables. Added
Deploy Applications
from Binary Artifacts.

Date Version Author Changes

Report a bug

APPENDIX A. REVISION HISTORY

17

https://bugzilla.redhat.com/enter_bug.cgi?product=dotNET&component=Documentation-Getting_Started_Guide

	Table of Contents
	CHAPTER 1. USING .NET CORE 2.1 ON RED HAT ENTERPRISE LINUX
	1.1. INSTALL AND REGISTER RED HAT ENTERPRISE LINUX
	1.2. INSTALL .NET CORE
	1.3. CREATE AN APPLICATION
	1.4. PUBLISH APPLICATIONS
	1.4.1. Publish .NET Core Applications
	1.4.2. Publish ASP.NET Core Applications

	1.5. RUN APPLICATIONS ON DOCKER

	CHAPTER 2. USING .NET CORE 2.1 ON RED HAT OPENSHIFT CONTAINER PLATFORM
	2.1. INSTALL IMAGE STREAMS
	2.2. DEPLOY APPLICATIONS FROM SOURCE
	2.3. DEPLOY APPLICATIONS FROM BINARY ARTIFACTS
	2.4. ENVIRONMENT VARIABLES
	2.5. SAMPLE APPLICATIONS

	CHAPTER 3. MIGRATING TO .NET CORE 2.1
	3.1. MIGRATING FROM PREVIOUS VERSIONS OF .NET CORE
	3.2. MIGRATING FROM .NET FRAMEWORK TO .NET CORE 2.1
	3.2.1. Migration considerations
	3.2.2. .NET Framework migration articles

	APPENDIX A. REVISION HISTORY

